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LE'ITER TO THE EDITOR 

Exact solution of Z ( N )  invariant spin models on a triangular 
lattice 

R N Onody and V Kurak 
Departamento de Fisica e Cidncia dos Materiais, Instituto de Fisica e Quimica de SHo 
Carlos, Universidade de SHo Paulo-CP 369 13560, SHo Carlos, SP, Brad 

Received 15 May 1984 

Abstract. Based on Baxter's ideas we present a method to solve spin models on triangular 
lattices. If the model has only nearest neighbour interaction and it satisfies the star-triangle 
relation then the exact free energy can be obtained. We apply the method to reobtain the 
critical triangular Potts model and to extend the self-dual Z ( N )  solutions of Fateev and 
Zamolodchikov to the triangular lattice. 

It has been recognised in recent years that the two-dimensional Potts model is experi- 
mentally realisable. The relevant substances are adsorbed monolayers (Alexander 1975, 
Bretz 1977, Tejwani et a1 1980, Berker et al 1978) and silver p alumina (Gouyet et a1 
1980) and they correspond to the three-state model on triangular lattices. The interest 
in the triangular Potts model has since increased. From the theoretical point of view, 
the critical triangular Potts model was solved using an equivalence between this model 
and a six-vertex model on a KagomC lattice (Baxter et a1 1978) which is, on the other 
hand, equivalent to a solvable 20-vertex model (Kelland 1974). In our letter we present 
a method which we believe is simpler and also applies to other models where those 
equivalences have not been found. 

In his book Baxter (1982) derived the solution of the Ising model on a triangular 
lattice based on the equivalence between an eight-vertex model on a KagomC lattice 
and two decoupled king models defined on a triangular and hexagonal lattice. We 
will show that as long as a spin model has only nearest neighbour interactions and 
obeys the star-triangle relation (see Pokrowsky and Bashilov 1982) the method permits 
us to solve the spin model defined on a triangular lattice from the known solution of 
the same model on a square lattice. 

First we make a superposition of a triangular and a hexagonal lattice as shown in 
figure 1. On each site of these lattices we define spins variables CT that assume the 
values 0, 1, . . . , q - 1. With the prescription given in figure 2, we associate to the two 
decoupled lattices a q3 vertex model on a KagomC lattice. Note that this KagomC 
lattice has three types of vertices. If the spin model satisfies the star-triangle relation 
then the vertex model obeys the factorisation equations and its partition function is 
2 invariant (Baxter 1978) so that we can write 
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Figure 1. - - -, hexagonal lattice; - - -, triangular lattice, -, three types of vertices 
on a Kagomd lattice. 

01 - 02 
Figure 2. Vertex prescription. The difference U, -U, is modulo q. 

where FK is the free energy per vertex of the KagomC lattice and Fi is the free energy 
per vertex of type i of the square lattice. 

It is easy to see that a Kagomi lattice with N vertices corresponds to a triangular 
lattice with N / 3  sites and a hexagonal lattice with 2 N / 3  sites (as we are interested in 
the thermodynamic limit the boundary conditions on these lattices are irrelevant) ; then 

-pF K -  --'pF-z 3 t 3PFh (2) 
where Ft and Fh are the free energy per spin of the triangular and hexagonal lattices 
respectively. 

Following Pokrowsky and Bashilov (1982) we write the star-triangle relation as 
functional equations (see figure 3) 

Y Ku, e 02) K,,,( 03)  
u=o 

= A(@,, 02, f 3 3 ) K 7 p 3 ( r  - @ , ) ~ U 3 U I ( T  - %)K71u* (~  - 03) (3) 
where K,,,(8,) and Kuur(r - e i )  are the Boltzmann weights on links of type i of the 
hexagonal and triangular lattices respectively, A ( B , ,  02, e,) is some symmetric function 
of the rapidities 8, and e l  + + O3 = 7r. 
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Figure 3. Star-triangle relation. 

Making a spin decimation on the hexagonal lattice through the star-triangle relation 
we get 

- p ~ , ,  = f In A - f p ~ , .  (4) 

Combining the expressions (l), (2) and (4) we obtain 
3 

-pFt = -4 pF, - f  In A. 
i = l  

Equation ( 5 )  is the key expression of our letter. Once the model has been solved 
on the square lattice and obeys the star-triangle relation we can get the result for the 
triangular and hexagonal lattices. 

We now derive the free energy of the critical Potts model using expression (5 ) .  The 
Boltzmann weights for this model are 

(6 )  Kuu,(ei) = 1 + u(ei)s,, 

where u(ei) is given by (see Pokrowsky and Bashilov 1982) 

v(ei) = 2 cosh(pa) sinh[p(a - O,)]/sinh(pLB,) (7) 

The function A is derived from the star-triangle relation and we give its expression 
and ,q'" = 2 cosh p r .  

below: 

The free energy per vertex of type i is given by 

sinh[rx( 1 - y ) ]  tanh( ~ y x )  cosh[yx( r - 2&)] 
x sinh( r x )  

m 

dx - P F , = f l n q +  

m e - v n  

- p ~ , = f l n q + p r + 2  - tanh(prn) cosh[pn(r -2Bi)]. 
n = ~  n ( 9 4  

Equations (9a), (9b) and ( 9 c )  are the free energy for the cases q < 4, q = 4, q > 4 
respectively and y = -ip. 
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From expressions (9, (8) and (9) we can derive the critical Potts model on a 
triangular lattice: 

Here equations (loa), (lob) and (1Oc) correspond again to the cases q < 4 ,  q = 4  
and q > 4 respectively. The connection with Baxter's parameters (Baxter et a1 1978) 
is A = p r ,  a j = p ( r - e j )  and ~ ~ = ( r - t ) ~ ) / 2 7 ~ .  

Recently some new results for self-dual Z ( N )  spin models were obtained on the 
square lattice (Fateev and Zamolodchikov 1982). The model is defined by the statistical 
weights determining the interaction between two spins U and U' on the neighbouring 
sites of the lattice. They found the following parametrisation: 

where N is the number of spin states, n = U - U' (modulo N), and Bi are the rapidities 

The functions Kn(Bl) have the following properties: K, = K - ,  = KN-, and KO is 
with el + e2 + e3 = r. 

chosen to be equal to one. The free energy per vertex of type i is given below: 

I, x cosh2(frx) cosh(fN7rx) 

Making use of the star-triangle relation (3) we can find the function A :  

(12) 
sinh(fx0,) sinh[fx(r - e,)] sinh[frx(N - l)] 

d x. -pc = 

where [N/2] means the largest integer smaller than N/2. Finally using the relations 
(9, (12) and (13) we get the self-dual solutions on a triangular lattice: 

O0 sinh[frx(N - l)] sinh(xOi) 
- P F , = i  In N - f  x cosh(frNx) cosh(frx) sinh(rx) dx. (14) 

We would like to acknowledge F Alcaraz for calling our attention to this problem, 
J R Drugowich de Felicio for stimulating discussions and R Koberle for reading the 
manuscript. 
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